

January 29, 2024 1:00 PM ET



1

# **Agenda**

#### Welcome and Introductions

Robert (Bob) Hopkins, Jr., MD

NFID Medical Director

Strategies for Improving HPV Vaccination Rates

#### Cassandra (Sandy) Pingali, MS, MPH

Epidemiologist

Centers for Disease Control and Prevention (CDC)

#### Sherri Zorn, MD

Pediatric Physician-Quality Improvement Coach

Washington Chapter of American Academy of Pediatrics, Washington HPV Free Task Force

#### **Kimberly Williams**

Chief Diversity Equity and Inclusion Officer

Cervivor

#### **Questions and Answers**



This webinar is supported by an unrestricted educational grant from Merck & Co., Inc. NFID policies restrict funders from controlling program content.

## **General Information**

- This webinar is being recorded
- To hear audio, connect using your computer speakers or phone
- All attendees will be placed on mute throughout the program
- Q&A period following presentation
  - Use the Q&A tab at the bottom of your screen to type your questions
  - Indicate if your question is directed to a specific presenter
- Following the webinar, all registered participants will receive an email with a link to webinar recording and presentation slides
- At the end of the webinar, participants will be directed to an online evaluation



3

## **CME Credit and Evaluation**

- The National Foundation for Infectious Diseases (NFID) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians
- NFID designates the live activity for a maximum of 1.0 AMA PRA Category 1 Credit TM
- For the recorded version, NFID designates the enduring material for a maximum of 1.0 AMA PRA Category 1 Credit ™
- Physicians should claim only the credit commensurate with the extent of their participation in the activity
- To receive credit, you must complete the online evaluation and pass the post-test with a score of 80% or higher
- The link to the online evaluation and post-test will be sent via email to all registered participants following the webinar
- Certificate will be available for print or download following successful completion of online evaluation and post-test until January 29, 2025
- Contact cme@nfid.org with any questions



## **Disclosures**

Marla Dalton (NFID Staff) owned stock from Merck & Co., Inc.

All relevant financial relationships listed have been mitigated

All other individuals in a position to control the content of this activity have no relevant financial relationships with ineligible companies to disclose



5

# **Learning Objectives**

At the conclusion of this activity, participants will be able to:

- Discuss current US recommendations for HPV vaccination
- Discuss coverage and disparities in HPV vaccination in the US
- Implement strategies to increase HPV vaccination rates in the US



## **About NFID**

Founded in 1973, the National Foundation for Infectious Diseases (NFID) is a non-profit 501(c)(3) organization

Healthier lives for all through the effective prevention and treatment of infectious diseases

#### Mission:

Educate and engage the public, communities, and healthcare professionals about infectious diseases across the lifespan

#### **Core Values:**

- Collaboration
- Diversity, Equity, Inclusion
- Evidence-Based
- Integrity
- Transparency



www.nfid.org



Help support NFID in the fight against infectious diseases: www.nfid.org/donate

# Poll

What is the most frequent barrier you face when recommending HPV vaccine to patients/parents?

- A. Concerns about vaccine safety and/or side effects
- B. Lack of awareness about HPV
- C. Stigma around sexual health
- D. Logistics of timely follow-up for multi-dose series
- E. Cost
- F. Not currently in practice





a

# Recommended Immunization Schedule for Adolescents



## **HPV Vaccine Recommendations across the** Lifespan

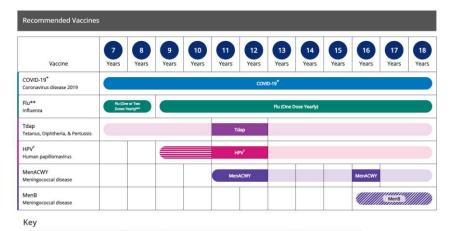
| Routine vaccination              | Age 11–12 years;<br>can be started at age 9 years                 |
|----------------------------------|-------------------------------------------------------------------|
| Catch-up Vaccination*            | Age <b>13–26 years</b> , if not adequately vaccinated             |
| Shared clinical decision-making* | Some adults age <b>27–45 years</b> , if not adequately vaccinated |

#### Children and adults age 9 through 26 years

 HPV vaccination is routinely recommended at age 11 or 12 years; vaccination can be given starting at age 9 years. Catch-up HPV vaccination is recommended for all persons through age 26 years who are not adequately vaccinated.

#### Adults age >26 years

 Catch-up HPV vaccination is not recommended for all adults age >26 years. Instead, shared clinical decision-making regarding HPV vaccination is recommended for some adults age 27 through 45 years who are not adequately vaccinated. HPV vaccines are not licensed for use in adults age >45 years.




1. Human Papillomavirus Vaccination for Adults: Updated Recommendations of the Advisory Committee on Immunization Practices | MMWR (cdc.gov)

2. www.cdc.gov/mmwr/volumes/70/ss/ss7003a1.htm

11

# Recommended Vaccinations for Children Age 7 to 18 Years Old





HPV Vaccine Schedule and Dosing | CDC

# **HPV Vaccine Schedule and Dosing**









About 80% of people will get an HPV infection in their lifetime. Recommending HPV vaccination for all 11–12 year-olds can protect them long before they are ever exposed. CDC recommends two doses of HPV vaccine for all adolescents at age 11 or 12 years.

- A 2-dose series is recommended for those age 11 through 12 years old separated by 6 to 12 months
  - The series can begin at age 9 years
- A 3-dose series is recommended for those with weakened immune systems and those who start the series after their 15th birthday



www.vax2stopcancer.org/resources-cliniciansER

13

# Assessing Routine Vaccination Coverage with the National Immunization Survey-Teen (NIS-Teen)



# What is the National Immunization Survey-Teen (NIS-Teen)?

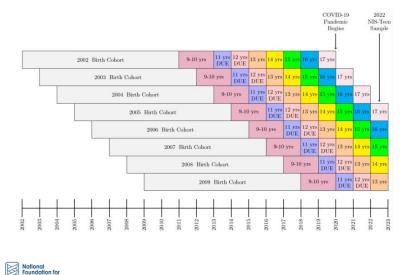
- Who: Parents/guardians of adolescents age 13-17 years
- What: Surveillance system to monitor trends in vaccination coverage at the national, state, and local area/territory level
- When: January 2022 to December 2022
- Where: 50 states, Washington DC, select local areas and territories
- Why: Data are useful to identify gaps in immunization coverage, evaluate vaccination campaigns, and implement strategies to improve vaccine uptake





15

# **NIS-Teen Methodology**


- Two phase survey
  - 1st phase: random digit dialed cell phone survey of parents in households with teens age 13-17 years
  - 2<sup>nd</sup> phase: mailed survey of vaccination providers
- Household survey collects socio-demographics, health insurance status, and consent for provider survey
- Provider survey collects the types of vaccinations, number of doses, dates of administration, and other administrative data about the healthcare facility
  - Teens are classified as being up to date based on the ACIPrecommended number of doses for each vaccine
- Sample size of 2022 NIS-Teen survey included data collected from parents/guardians of 16,043 adolescents
  - Born January 2004-January 2010








# 2022 NIS-Teen Analytic Approach



- Traditional crosssectional analysis of coverage among teens age 13-17 years
- Birth cohort analysis of coverage by age groups to capture recent changes in vaccination coverage during the COVID-19 pandemic

17

# Annual Vaccination Coverage Results among Adolescents Age 13-17 Years Available in Yearly MMWR Publication and CDC TeenVaxView





1. Vaccination Coverage Among Adolescents Aged 13–17 Years — National Immunization Survey—Teen, United States, 2022 | MMWR (cdc.gov)

2. TeenVaxView | Home | CDC

# **Cross-Sectional Analysis Results**



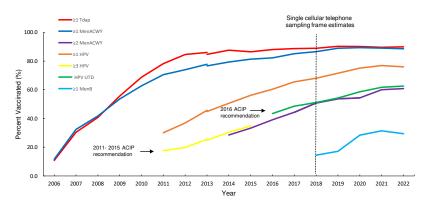
19

# Estimated Vaccination Coverage with Routine Vaccines among Adolescents Age 13-17 Years: NIS-Teen, 2021 and 2022

| VACCINE                           | 2022<br>(n=16,043) | 2021<br>(n=18,002) | SIGNIFICANT Increase or Decrease? | PERCENTAGE POINT DIFFERENCE COMPARED TO 2021 |  |
|-----------------------------------|--------------------|--------------------|-----------------------------------|----------------------------------------------|--|
|                                   | % (95% CI)         | % (95% CI)         |                                   |                                              |  |
| ≥1 Tdap                           | 89.9 (88.9-90.9)   | 89.6 (88.6-90.5)   | j,                                | 0.3                                          |  |
| ≥1 MenACWY                        | 88.6 (87.6-89.6)   | 89.0 (87.9-90.0)   | •                                 | -0.4                                         |  |
| ≥2 MenACWY*                       | 60.8 (57.5-63.9)   | 60.0 (56.6-63.3)   | -                                 | 0.8                                          |  |
| HPV Females and Males<br>Combined |                    |                    |                                   |                                              |  |
| ≥1 HPV                            | 76.0 (74.7-77.3)   | 76.9 (75.6-78.2)   | -                                 | -0.9                                         |  |
| HPV UTD                           | 62.6 (61.1-64.0)   | 61.7 (60.2-63.2)   | -                                 | 0.8                                          |  |
| HPV Females Only                  |                    |                    |                                   |                                              |  |
| ≥1 HPV                            | 77.8 (75.8-79.6)   | 78.5 (76.6-80.4)   | =                                 | -0.8                                         |  |
| HPV UTD                           | 64.6 (62.5-66.6)   | 63.8 (61.5-65.9)   | -                                 | 0.9                                          |  |
| HPV Males Only                    |                    |                    |                                   |                                              |  |
| ≥1 HPV                            | 74.4 (72.5-76.1)   | 75.4 (73.5-77.2)   | -                                 | -1.1                                         |  |
| HPV UTD                           | 60.6 (58.6-62.6)   | 59.8 (57.6-61.8)   | -                                 | 0.9                                          |  |



<sup>\*</sup>Assessed among adolescents age 17 years; MenACWY estimate does not include 17-year-old adolescents who received their first MenACWY dose at ≥16 years and do not need a second vaccine dose


#### **Estimated Vaccination Coverage with Catch-Up and Other Vaccines** Recommended for Adolescents among Adolescents Age 13-17 Years: NIS-Teen, 2021 and 2022

| VACCINE                                                                           | 2022<br>(n=16,043)                   | 2021<br>(n=18,002)                   | SIGNIFICANT Increase or Decrease? | PERCENTAGE POINT<br>DIFFERENCE<br>COMPARED TO 2021 |
|-----------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------|
|                                                                                   | % (95% CI)                           | % (95% CI)                           |                                   |                                                    |
| ≥1 MenB                                                                           | 29.4 (26.5-32.4)                     | 31.4 (28.2-34.8)                     | -                                 | -2.1                                               |
| ≥2 MMR                                                                            | 91.2 (90.2-92.1)                     | 92.2 (91.2-93.2)                     | -                                 | -1.1                                               |
| ≥2 HepA                                                                           | 85.0 (83.8-86.1)                     | 85.0 (83.8-86.1)                     | -                                 | 0.0                                                |
| ≥3 HepB                                                                           | 91.2 (90.2-92.1)                     | 92.3 (91.3-93.1)                     | -                                 | -1.1                                               |
| Varicella                                                                         |                                      |                                      |                                   |                                                    |
| History of varicella disease                                                      | 7.0 (6.3-7.8)                        | 7.3 (6.5-8.2)                        | -                                 | -0.3                                               |
| Among adolescents<br>without history of<br>varicella disease:<br>≥1 VAR<br>≥2 VAR | 94.1 (93.2-94.8)<br>90.8 (89.8-91.8) | 94.9 (94.0-95.7)<br>91.5 (90.5-92.5) | :                                 | -0.9<br>-0.7                                       |
| History of varicella<br>disease or received ≥2<br>VAR                             | 91.5 (90.5-92.4)                     | 92.2 (91.2-93.1)                     | -                                 | -0.7                                               |



21

## Estimated Vaccination Coverage with Selected Vaccines and Doses\* among Adolescents Age 13-17 Years, by Survey Year: NIS-Teen<sup>§, ¶</sup>, 2006-2022



\*21 dose Tdap at or after age 10 years; ≥1 dose MenACWY or meningococcal-unknown byte vaccine; ≥2 doses MenACWY or meningococcal-unknown byte vaccine, calculated only among adolescents age 17 years at time of interview. Does not include adolescents who received their first and only dose of MenACWY at or after 16 years of age; HPV vaccine, nine-valent (9vHPV), quadrivalent 4(4HPV). To briend (2MPV). The received here in 2015 and for males in 2016 and for males in 2016 and for males in 2011. Because HPV vaccination was recommended for boys in 2011, cowarge for all adolescents was not measured before that year; HPV UTD - Includes those with ≥3 doses, and those with 2 doses when the first HPV vaccined ose was initiated before age 15 years and at least five months minus four days elapsed between the first and second dose.

† NIS-Teen implemented a revised adequate provider data definition (APD) in 2014, and retrospectively applied the revised APD definition to 2013 data. Estimates using different APD definitions may not be directly comparable.

§ NIS-Teen moved to a single-sample frame in 2018.

† The Advisory Committee on Immunization Practices (ACIP) revised the recommended HPV vaccination schedule in late 2016. The schedule changed from a 3-dose to 2-dose series with appropriate spacing between receipt of the 1st and 2nd dose for immunocompetent adolescents initiating the series between the ages of 15 and 28 years. Because of the change in definition, the graph includes estimates of 3 doses HPV from 2011 to 2015 and the HPV UTD estimate for 2016 - 2022. Because HPV vaccination was recommended for boys in 2011, coverage for all adolescents was not measured before that year.



# Estimated Vaccination Coverage among Adolescents Age 13-17 Years, by Metropolitan Statistical Area: NIS-Teen, 2022

| Vaccines | Non-MSA<br>(Mostly Rural) | MSA,<br>Non-Principal City<br>(Mostly Suburban) | Non-Principal City (Mostly Urban) |                      | Percentage point<br>difference (MSA<br>Non-Principal<br>City% - Principal<br>City %) |  |
|----------|---------------------------|-------------------------------------------------|-----------------------------------|----------------------|--------------------------------------------------------------------------------------|--|
| ≥1 HPV   | 71.3 (68.1 to 74.2)*      | 75.0 (73.1 to 76.9)*                            | 78.3 (76.2 to 80.4)               | -7.1 (-10.8 to -3.4) | -3.3 ( -6.1 to -0.5)                                                                 |  |
| HPV UTD  | 56.2 (52.8 to 59.5)*      | 62.1 (60.0 to 64.1)                             | 64.8 (62.4 to 67.1)               | -8.6 (-12.7 to -4.5) | -2.7 ( -5.8 to 0.4)                                                                  |  |

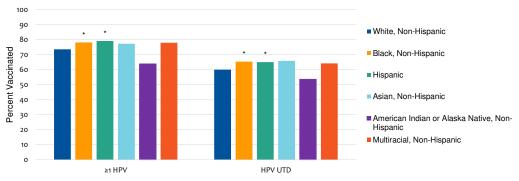
 $<sup>^{\</sup>star}$ Statistically significant difference compared with adolescents living in MSA Principal City (p<0.05).

#### Vaccination Coverage by Geographic Area

- Adolescents living in mostly rural areas (non-MSAs) had significantly lower coverage with ≥1
  HPV and HPV UTD compared to adolescents living in mostly urban areas (MSA Principal Cities)
- Adolescents living in MSA non-principal cities had significantly lower coverage with ≥1 HPV compared to adolescents living in mostly urban areas (MSA Principal Cities)



# Estimated Vaccination Coverage among Adolescents Age 13-17 Years, by Poverty Status: NIS-Teen, 2022


| Vaccines | Below Poverty<br>Level | At or Above<br>Poverty Level | Percentage Point Difference (Below Poverty % - At or Above Poverty %) |
|----------|------------------------|------------------------------|-----------------------------------------------------------------------|
| ≥1 HPV   | 79.3 (75.6 to 82.6)    | 75.5 (74.1 to 76.9)          | 3.8 (0.0 to 7.5)                                                      |
| HPV UTD  | 64.0 (59.9 to 68.0)    | 62.1 (60.5 to 63.6)          | 2.0 (-2.4 to 6.3)                                                     |

#### **Vaccination Coverage by Poverty Status**

There were no significant differences in coverage by poverty status for ≥1 HPV and HPV UTD



# Estimated Vaccination Coverage among Adolescents Age 13-17 Years, by Race and Ethnicity: NIS-Teen, 2022



\* Coverage significantly higher compared to white adolescents.

#### Vaccination Coverage by Race and Ethnicity

 Black and Hispanic adolescents had significantly higher coverage with ≥1 HPV, HPV UTD than White adolescents

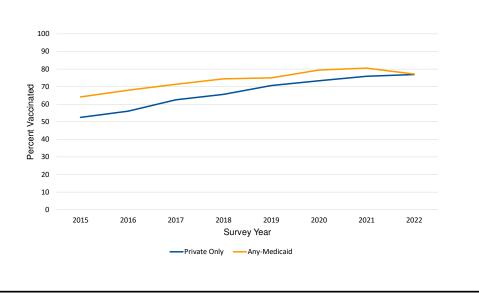


25

# Estimated Vaccination Coverage among Adolescents Age 13-17 Years, by Health Insurance Status: NIS-Teen, 2022

| Vaccines    | Private<br>Insurance | Any-Medicaid        | Other<br>Insurance   | Uninsured            | Percentage<br>point<br>difference for<br>Any Medicaid | Percentage<br>point<br>difference for<br>Other<br>Insurance | Percentage<br>point<br>difference for<br>Uninsured |
|-------------|----------------------|---------------------|----------------------|----------------------|-------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|
| ≥1 HPV dose | 76.9 (75.3 to 78.4)  | 77.2 (74.8 to 79.4) | 71.8 (66.8 to 76.3)  | 58.3 (48.2 to 67.7)* | 0.3                                                   | -5.1                                                        | -18.6                                              |
| HPV UTD     | 64.4 (62.6 to 66.1)  | 63.5 (60.9 to 66.0) | 56.0 (51.0 to 60.9)* | 38.2 (29.7 to 47.5)* | -0.9                                                  | -8.4                                                        | -26.2                                              |

 $^{\star}$ Statistically significant difference compared with teens with private insurance only (p<0.05).

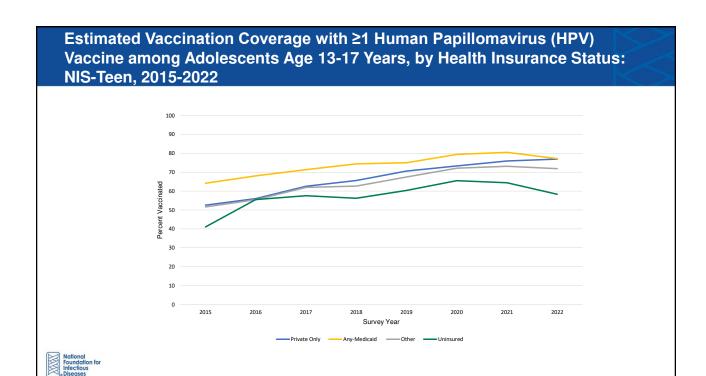

#### Vaccination coverage by health insurance status

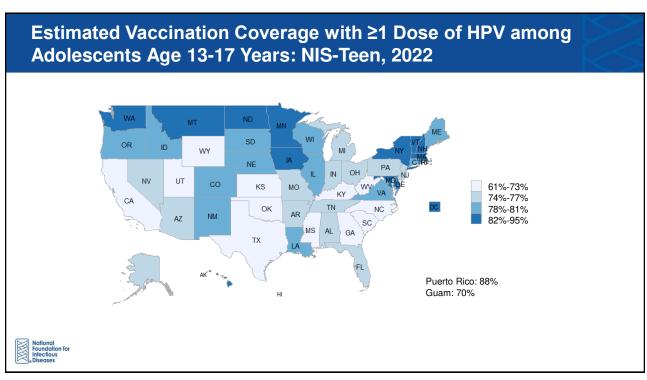
- Compared to adolescents with private insurance only, adolescents with other insurance (CHIP, military, IHS, any other) had significantly lower percentage of adolescents HPV UTD
- Compared to adolescents with private insurance only, uninsured adolescents had significantly lower coverage with ≥1 HPV and HPV UTD

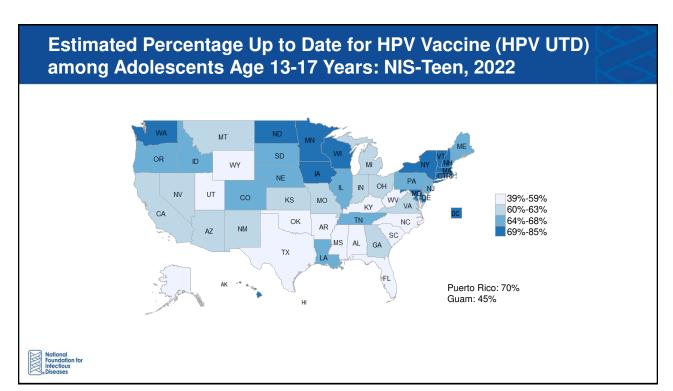


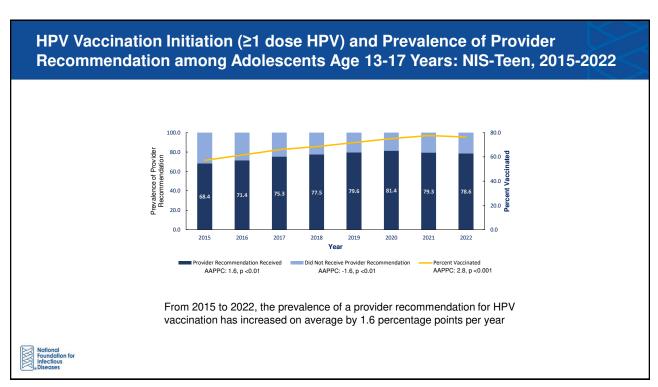
 Medicaid-insured adolescents and privately insured adolescents had similar HPV vaccination coverage in 2022



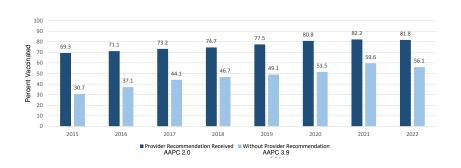




Estimated Vaccination Coverage with Selected Vaccines and Doses among Adolescents Age 13-17 Years and those with Private and Any-Medicaid Insurance: NIS-Teen, 2021 and 2022


|         | Health Insurance Status, % (95% CI) |                       |                |                     |                     |                       |  |  |  |
|---------|-------------------------------------|-----------------------|----------------|---------------------|---------------------|-----------------------|--|--|--|
|         | P                                   | rivate Insurance Only |                | Any-Medicaid        |                     |                       |  |  |  |
|         | 2022                                | 2022 2021 Difference  |                | 2022                | 2021                | Difference            |  |  |  |
|         | (n = 9,463)                         | (n = 11,146)          |                | (n = 4,939)         | (n = 5,163)         |                       |  |  |  |
| ≥1 HPV  | 76.9 (75.3 to 78.4)                 | 75.9 (74.1 to 77.6)   | 1.0 (-1.3-3.4) | 77.2 (74.8 to 79.4) | 80.5 (78.2 to 82.5) | -3.3 (-6.4 to -0.1) * |  |  |  |
| HPV UTD | 64.4 (62.6 to 66.1)                 | 62.1 (60.2 to 64.0)   | 2.3 (-0.4-4.9) | 63.5 (60.9 to 66.0) | 64.1 (61.3 to 66.7) | -0.5 (-4.3 to 3.2)    |  |  |  |


<sup>\*</sup>Statistically significant difference (p<0.05) in estimated vaccination coverage within insurance status; referent group was 2021 survey year.







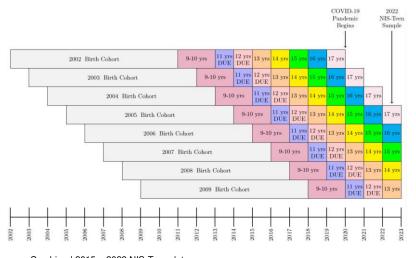









HPV vaccination initiation is **higher** among adolescents **with** a provider recommendation than those without a provider recommendation




33

# **Birth Cohort Analysis Results**







- National Foundation for Infectious Diseases
- Combined 2015 2022 NIS-Teen data.
- Used Kaplan-Meier estimation to account for censoring of vaccination status at ages 14 and older.

Coverage with ≥1 Dose of Tdap, ≥1 Dose of MenACWY, ≥1 Dose of HPV Vaccine, and Percentage HPV UTD, among Adolescents in the 2007–2009 Birth Years, by Age 13 Years: NIS-Teen, 2020–2022

|                     | ≥1 Tdap              |                     |                     | ≥1 MenACWY           |                     |                     | ≥1 HPV              |                     |                     | HPV UTD             |                     |
|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                     | Birth Year           |                     |                     | Birth Year           |                     | Birth Year          |                     |                     | Birth Year          |                     |                     |
| 2007                | 2008                 | 2009                | 2007                | 2008                 | 2009                | 2007                | 2008                | 2009                | 2007                | 2008                | 2009                |
| % (95% CI)          | % (95% CI)           | % (95% CI)          | % (95% CI)          | % (95% CI)           | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          |
| 89.6<br>(88.5-90.7) | 86.4<br>(84.1-88.5)* | 87.1<br>(83.0-90.7) | 87.1<br>(85.5-88.5) | 84.1<br>(81.5-86.4)* | 87.3<br>(84.1-90.2) | 72.6<br>(70.8-74.5) | 69.5<br>(66.8-72.1) | 71.4<br>(67.1-75.6) | 52.9<br>(50.8-55.0) | 50.0<br>(47.2-52.8) | 52.7<br>(48.0-57.6) |

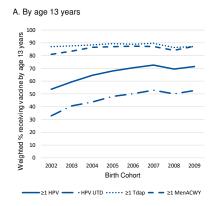
Abbreviations: Tdap=tetanus, diphtheria, and acellular pertussis vaccine, MenACWY=quadrivalent meningococcal conjugate vaccine, HPV= human papillomavirus vaccine.

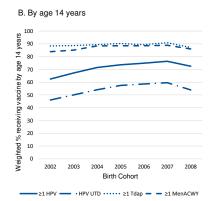
- Coverage with ≥1 Tdap, ≥1 MenACWY for adolescents born in 2008 was significantly lower by age 13 years than for earlier birth years
  - Coverage with ≥1 HPV and HPV UTD was not significantly different
- Coverage with ≥1 Tdap, ≥1 MenACWY, ≥1 HPV and HPV UTD for adolescents born in 2009 was not significantly different than for the 2008 or 2007 birth years



Coverage with ≥1 Dose of Tdap, ≥1 Dose of MenACWY, ≥1 Dose of HPV Vaccine, and Percentage HPV UTD, among Adolescents in the 2006–2008 Birth Years, by Age 14 Years: NIS-Teen, 2020–2022

| ≥1 Tdap             |                     |                      | ≥1 MenACWY          |                     |                     | ≥1 HPV              |                     |                      | HPV UTD             |                     |                     |
|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|
| Birth Year          |                     |                      | Birth Year          |                     |                     | Birth Year          |                     |                      | Birth Year          |                     |                     |
| 2006                | 2007                | 2008                 | 2006                | 2007                | 2008                | 2006                | 2007                | 2008                 | 2006                | 2007                | 2008                |
| % (95% CI)          | % (95% CI)          | % (95% CI)           | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)          | % (95% CI)           | % (95% CI)          | % (95% CI)          | % (95% CI)          |
| 89.3<br>(88.2-90.4) | 90.9<br>(89.7-91.9) | 87.1<br>(84.9-89.2)* | 88.5<br>(87.3-89.7) | 88.8<br>(87.2-90.2) | 86.0<br>(83.2-88.6) | 74.8<br>(73.1-76.4) | 76.3<br>(74.4-78.2) | 72.5<br>(69.5-75.5)* | 58.5<br>(56.7-60.3) | 59.6<br>(57.4-61.9) | 53.9<br>(50.9-56.9) |


Abbreviations: Tdap=tetanus, diphtheria, and acellular pertussis vaccine, MenACWY=quadrivalent meningococcal conjugate vaccine, HPV= human papillomavirus vaccine.




Coverage with ≥1 Tdap, ≥1 HPV and HPV UTD in the **2008 birth year** was **significantly lower by age 14 years** than in earlier birth years. Coverage with ≥1 MenACWY was not significantly different (but, was borderline significant p=0.05).

37

Coverage with ≥1 Dose of HPV Vaccine, Percentage HPV UTD, ≥1 Dose of MenACWY, and ≥1 Dose of Tdap, among Adolescents in the 2002–2009 Annual Birth Cohorts, by Age 13 Years (A) and by Age 14 Years (B): NIS-Teen, 2015–2022





National Foundation for Infectious Diseases

Abbreviations: Tdap=tetanus, diphtheria, and acellular pertussis vaccine, MenACWY=quadrivalent meningococcal conjugate vaccine, HPV= human papillomavirus vaccine.

# **Birth Cohort Analysis Summary**

- Coverage with ≥1 Tdap, ≥1 MenACWY, ≥1 HPV, and HPV UTD in the 2009 birth year was not significantly different than in the 2008 or 2007 birth years
- Coverage with ≥1 Tdap, ≥1 MenACWY in the 2008 birth year was significantly lower by age 13 years than in earlier birth years
  - Coverage with ≥1 HPV and HPV UTD was not significantly different
- Coverage with ≥1 Tdap, ≥1 HPV, and HPV UTD in the 2008 birth year was significantly lower by age 14 years than in earlier birth years
  - Coverage with ≥1 MenACWY was not significantly different
- Vaccination coverage was significantly lower by sociodemographic factors and health insurance status and these coverage patterns varied by age and vaccine\*
  - Interestingly, vaccination coverage with all 4 vaccine measures in the 2008 birth year by age 14 years was significantly lower among those living in urban areas compared with earlier birth years



\*Vaccination Coverage Among Adolescents Aged 13–17 Years — National Immunization Survey-Teen, United States, 2022 | MMWR (cdc.gov)

39

# 3 Key Points and a Recommendation

#### **Key Points**

- For the first time in a decade, HPV vaccination coverage did not increase among teens age 13-17 years
- HPV vaccination initiation declined among Medicaid-insured teens and remains lowest among uninsured teens (2 of the 4 groups eligible for VFC)
- 3. Teens born in 2008 have **lower** coverage with ≥1 Tdap, ≥1 HPV, and a lower percentage HPV UTD than previous birth cohorts

#### Recommendation

In the wake of the COVID-19 pandemic, clinicians should review adolescent immunization histories, particularly for teens born in 2008 and for those who are VFC-eligible, to ensure that they are up to date with all recommended vaccinations



# **Thank You!**

- David Yankey
- Benjamin Fredua
- Madeleine Valier
- Laurie Elam-Evans
- Jim Singleton
- Shannon Stokley

- Sean Hu
- Seth Meador
- Sarah McCartha
- Carla Black



Sherri Zorn, MD
Pediatric Physician-Quality Improvement Coach
Washington Chapter of the American Academy of Pediatrics
Washington HPV Free Task Force



# **Barriers and Hesitancy Got You Down?**

- Barriers to HPV vaccination and HPV vaccine hesitancy are REAL-but not the whole story
- Common barriers to HPV vaccine:
  - Lack of awareness
  - STD stigma "my child isn't at risk"
  - Access
  - 3 shots in the adolescent bundle is "too many" for some parents, patients, AND some providers
  - Vaccine hesitancy: concerns about safety or effectiveness
  - Lack of healthcare professional recommendation—this one is on us!
- 23% of US parents (of 11-17-year-olds) are hesitant about HPV vaccine
- Conversely, the MAJORITY are not hesitant-let's focus on that!



Morales-Campos, Human Papillomavirus Vaccine Hesitancy in the United States. Pediatr Clin North Am. 2023, doi: 10.1016/j.pcl.2022.11.002. PMID: 36841591. Szilagyi, Prevalence and characteristics of HPV vaccine hesitancy among parents of adolescents across the US. Vaccine. 2020, doi: 10.1016/j.vaccine.2020.06.074.

43

# **Evidence-Based Strategies: Practical implementation Tips**

- Start HPV vaccination at age 9
- Strong healthcare professional recommendation
- Get leadership on board for clinic-level strategies:
  - Involve your whole team-vaccination is a team sport
  - Cancer prevention message
  - Standardize and simplify your immunization schedule
  - Standing orders
  - Targeted reminder recall
  - Hard-wiring "HPV@9"
  - Putting it all together for real results—examples from Washington state



# Innovative Strategy: Start HPV Vaccination at Age 9

- Increases on-time HPV completion by age 13
- Easier conversations with parents
  - Focus on cancer prevention—NOT on sex
- More time and opportunities to vaccinate—4 full years
  - Helps mitigate disruptions in care and access issues
- Fewer shots per visit
  - Many parents, patients, and heathcare professionals (HCPs) prefer spacing shots out instead of bundling
- Allows for simplified yearly outreach—skip the 6 month visit for the 2<sup>nd</sup> shot
  - Start at age 9 or 10–finish at age 10 or 11 (with the adolescent bundle)
- More relaxed approach to hesitancy
  - Less pressure to resolve hesitancy in a single visit
  - More time for hesitant parents/patients to learn about the vaccine

#### Best practice:

- American Academy of Pediatrics
- American Cancer Society
- National HPV Vaccination Roundtable
- Supported by ACIP guidelines

#### No downsides!

- Excellent immunity at age 9-10
- Immunity doesn't wear off

45

# **Mounting Body of Evidence Supports Starting at Age 9 Years**

- Human Vaccines and Immunotherapeutics
   Special Collection of 22 articles, all on HPV at age 9-10
- "Start HPV Vaccination at 9" Landing Page

Information, reference articles, tools, resources, videos, and more! https://hpvroundtable.org/start-hpv-vaccination-at-age-9/



O'Leary, Why the American Academy of Pediatrics recommends initiating HPV vaccine at age 9. Hum Vaccin Immunother. 2022 doi: 10.1080/21645515.2022.2146434
Biancarelli, Provider Experience Recommending HPV Vaccination Before Age 11 Years. 7 Pediatr. 2020 doi: 10.1016/j.jpeds.2019.10.025
Saxena, HPV vaccine initiation at 9 or 10 years of age and better series completion by age 13 among privately and publicly insured children in the US. Hum Vaccin
Immunother. 2023. doi: 10.1080/21645515.2022.2161253
Minihan, The association of initiating HPV vaccination at ages 9-10 years and up-to-date status among adolescents ages 13-17 years, 2016-2020. Hum Vaccin Immunother.

Minihan, The association of initiating HPV vaccination at ages 9-10 years and up-to-date status among adolescents ages 13-17 years, 2016-2020. Hum Vaccin Imr 2023. doi: 10.1080/21645515.2023.2175555

Kahn, Framing of national HPV vaccine recommendations and willingness to recommend at ages 9-10. Hum Vaccin Immunother. 2023, doi: 10.1080/21645515.2023.2172276 Goodman, Early Initiation of HPV Vaccination and Series Completion in Early and Mid-Adolescence. Pediatrics 2023; doi: 10.1542/peds.2022-058794



# **Strong Healthcare Professional Recommendation**

Strong healthcare professional (HCP) recommendation is the strongest facilitator for HPV vaccination!

- Proven to increase vaccine acceptance
- Presumptive announcement—assumes parents are ready to vaccinate
- Can be followed up with counseling or motivational interviewing if there are questions or hesitancy

A presumptive announcement is a statement—not an open-ended question! It sounds like: "Your child is due for the HPV vaccine today"

It does not sound like:

"What would you like to do today about the HPV vaccine?"

"Would you like the HPV vaccine? We have it available."



Opel, The architecture of provider-parent vaccine discussions at health supervision visits. Pediatrics. 2013, doi: 10.1542/peds.2013-2037 Gilkey, Provider communication and HPV vaccination: The impact of recommendation quality. Vaccine. 2016, doi: 10.1016/j.vaccine.2016.01.023 Brewer, Announcements versus conversations to improve HPV vaccination coverage: a randomized trial. Pediatrics. 2017, doi:10.1542/peds.2016-1764

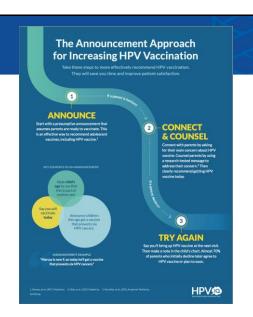
47

# **Announcement Approach**

Use presumptive announcement-15 seconds

Focus on cancer prevention

ANNOUNCEMENT EXAMPLE "Marcus is now 9, so today he'll get a vaccine that prevents six HPV cancers."


If hesitant, connect with parents, ask for their main concern

- Don't be afraid of questions
- Counsel using research-tested messages (on back of flyer)-2-5 minutes

If the parent declines, try again another day

 Almost 70% of parents who initially decline HPV, eventually say YES, or plan to soon





www.hpviq.org/wp-content/uploads/2021/01/AAT-flyer.pdf

Brewer, How to make effective HPV vaccine recommendations starting at age 9, Hum Vaccin & Immunother. 2023, doi: 10.1080/21645515.2023.2216117

Kornides, Parents Who Decline HPV Vaccination: Who Later Accepts and Why? Acad

Pediatr. 2018, doi: 10.1016/j.acap.2017.06.008.

# Research-Tested Messages to Address HPV Vaccine Concerns



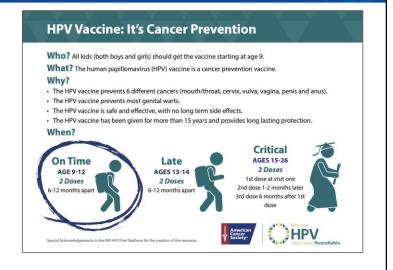


Survey of ~1,200 parents

More training tools available at HPVIQ.org

Shah, Questions and Concerns About HPV Vaccine: A Communication Experiment. Pediatrics. 2019, doi: 10.1542/peds.2018-1872

® Diseases


49

# **Involve Your Whole Team: Vaccination is a Team Sport**

#### Team members need to know:

- Prevents 90% of 6 HPV-related cancers
- HPV vaccine is SAFE, Effective, and provides long lasting protection
- Dosing schedule–same for all genders


Keep the message consistent and accurate

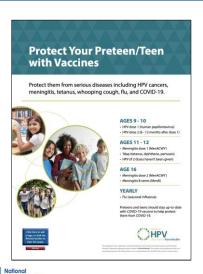


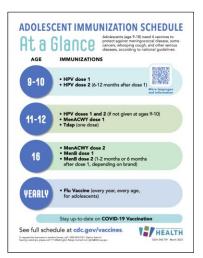


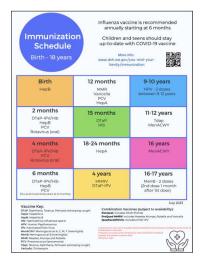
www.hpvroundtable.org

## **Patient Education: HPV is Cancer Prevention**







- Poster for exam room or lobby
- Diverse representation of 9-12-year-olds
- Simple message kids understand it!


American Cancer Society Brand Toolkit <a href="https://brandtoolkit.cancer.org/BMS/">https://brandtoolkit.cancer.org/BMS/</a>



# **Standardized Immunization Schedule Poster: Make It Simple**







#### Using the Immunization Schedule Poster

- Conversation starter
- Indicates vaccines are important and routine
- Increases transparency

#### Parents:

Like knowing what is next

#### Staff:

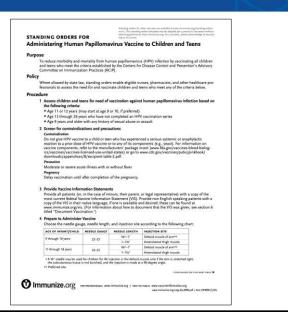
- Promotes standard workflow
- Helps with training
- Reduces confusion ... easier for staff

#### **Healthcare Professionals:**

Adds authority to strong recommendation

Customized to reflect each clinic's preferred immunization schedule and choice of combination vaccines (complies with ACIP and AAP guidelines)

- Teach staff and providers how to interact with the poster
- Large is best: recommend 18 x 24 inch or 12 x 16 inch
- Place in exam rooms (and lobby) where parents can read it




53

# Standing Orders: Use Every Opportunity to Vaccinate

- Get leadership approval-medical director or lead physician signs the standing order
- Empower your team—nursing and medical assistant staff can vaccinate without an additional order from a provider
- Avoid missed opportunities
- Vaccinate before the provider visit
- Use every opportunity to vaccinate—or at least to make a strong recommendation
- Templates available at Immunize.org





## Reminder/Recall Works for HPV!

2024 Randomized Clinical Trial: Mailed reminder/recall to parents resulted in more 11-12-year-old children receiving a dose of HPV vaccine (34.6%) compared to usual care (21.9%)—odds ratio of 1.56; 95% CI, 1.23-1.97

#### Planning Reminder/Recall Campaigns:

- Methods: mail, phone, text, EMR portal message
- Consider: staffing, cost, patient preference
- Data source: EMR-based, IIS registry-based (Immunization Information System)



Finney Rutten, Multilevel Implementation Strategies for Adolescent Human Papillomavirus Vaccine Uptake: A Cluster Randomized Clinical Trial. JAMA Pediatr. 2024, doi: 10.1001/jamapediatrics.2023.4932 Kempe, The Contribution of Reminder-Recall to Vaccine Delivery Efforts: A Narrative Review. Acad Pediatr. 2021, doi: 10.1016/j.acap.2021.02.016

55

# Reminder/Recall and Outreach: Be Strategic

#### Strategic suggestions

- Make reminder/recall campaigns sustainable and recurring
- Consider automating with a personalized message via portal or text
- Batches—easier for patient access, easier on staff, avoid running out of vaccine (order extra vaccine)
- 9-11-year-olds: Outreach for annual well child visit
  - Consider using 12-month dosing interval (skip the 6-month reminder for shot-only visit)
  - Get both doses done at 9 and 10
  - Or get 1 dose at 9-10 and bundle 2<sup>nd</sup> dose with Tdap and Men ACWY at age 11
- 12-year-olds: Reminder/Recall for overdue HPV vaccine
- Special post-pandemic outreach: birth cohort 2008–these are 15-16-year-olds overdue for vaccines



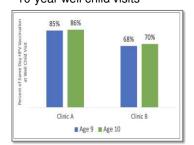
# Hardwiring "HPV@9" into Everyday Practice

#### Low Tech:

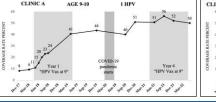
- Strong Provider Recommendation at age 9
- Staff training
- Simplified immunization poster
- HPV posters
- Standing orders

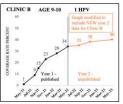


57


#### **High Tech: Optimize EMR**

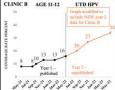
- Change EMR prompt to recommend HPV starting at age 9 (Health Maintenance or Care Gap Alert)
  - Barriers: custom build, need leadership support, difficult with multi-state organizations, or shared EMRs
- Well-Child Order Sets with HPV preselected at age 9 and 10
- Automate Reminder/Recall with personalized messages
- Standing Order Sets-for MAs to order accurately and easily with just a few clicks


# Real Results: Putting it All Together in Washington


# Acceptable to providers and parents!

Majority of patients (68-86%) received the HPV vaccine on the same day as the 9 and 10-year well child visits




# 2 clinics implemented "HPV at 9", paired HPV with 9 & 10-year well child visit





HPV initiation at 9-10: Increased by 30+ % points in 1 year





HPV completion at 11-12: accelerates in 2<sup>nd</sup> year; maximal increase of 40 % points



"I wish we had started vaccinating at age nine sooner. It is so important, and it's made it so simple" Zorn, Multi-level quality improvement strategies to optimize HPV vaccination starting at the 9-year well child visit: Success stories from two private pediatric clinics. Hum Vaccin Immunother. 2023 doi: 10.1080/2164551.

# Rural Clinic Feedback: "HPV@9" is EASY to Implement

- "This has been an eye-opening experience and a big surprise that parents are welcoming of HPV at age 9/10"
- "Wow, I didn't think it would be this easy" ... referring to implementing HPV@9
- "This has been a real win compared to how contentious COVID-19 vaccine was"

sy Rec

Survey of 34 providers in 5 clinics serving rural Washington communities:

#### Recommending HPV at 9-10 compared to 11-12

- 56% somewhat or much easier
- 35% same
- 9% somewhat or much harder

WCAAP "HPV@9" QI Project Cohort 1 (unpublished)



Foundation for Infectious

\*Diseases

Reinvigorate Your HPV Vaccine Strategies: Start at Age 9 Years

"Proud to be preventing cancer!"

You can be successful too!





# Acknowledgements-Thank You!

More than 30 pediatric and primary care clinics in Washington informed this "HPV@9" work

#### Collaboration:

- WA HPV Free Task Force
- Washington Chapter of the American Academy of Pediatrics
- WA Department of Health
- National HPV Vaccination Roundtable







61

## References

- 1. Morales-Campos, Human Papillomavirus Vaccine Hesitancy in the United States. Pediatr Clin North Am. 2023, doi: 10.1016/j.pcl.2022.11.002
- Szilagyi, Prevalence and characteristics of HPV vaccine hesitancy among parents of adolescents across the US. Vaccine. 2020, doi: 10.1016/j.vaccine.2020.06.074
- Meites, Use of a 2-dose schedule for human papillomavirus vaccination updated recommendations of the advisory committee on immunization practices. MMWR. 2016. doi:10.15585/mmwr.mm6549a5
- O'Leary, Why the American Academy of Pediatrics recommends initiating HPV vaccine at age 9. Hum Vaccin Immunother. 2022 doi: 10.1080/21645515.2022.2146434
- 5. Biancarelli, Provider Experience Recommending HPV Vaccination Before Age 11 Years. J Pediatr. 2020 doi: 10.1016/j.jpeds.2019.10.025
- Saxena, HPV vaccine initiation at 9 or 10 years of age and better series completion by age 13 among privately and publicly insured children in the US. Hum Vaccin Immunother. 2023. doi: 10.1080/21645515.2022.2161253
- Minihan, The association of initiating HPV vaccination at ages 9-10 years and up-to-date status among adolescents ages 13-17 years, 2016-2020. Hum Vaccin Immunother. 2023, doi: 10.1080/21645515.2023.2175555
- Kahn, Framing of national HPV vaccine recommendations and willingness to recommend at ages 9-10. Hum Vaccin Immunother. 2023, doi: 10.1080/21645515.2023.2172276
- 9. Goodman, Early Initiation of HPV Vaccination and Series Completion in Early and Mid-Adolescence. Pediatrics 2023; doi: 10.1542/peds.2022-058794
- 10. Opel, The architecture of provider-parent vaccine discussions at health supervision visits. Pediatrics. 2013, doi: 10.1542/peds.2013-2037
- 11. Gilkey, Provider communication and HPV vaccination: The impact of recommendation quality. Vaccine. 2016, doi: 10.1016/j.vaccine.2016.01.023
- 12. Brewer, Announcements versus conversations to improve HPV vaccination coverage: a randomized trial. Pediatrics. 2017, doi:10.1542/peds.2016.1764
- 13. Brewer, How to make effective HPV vaccine recommendations starting at age 9, Hum Vaccin & Immunother. 2023, doi: 10.1080/21645515.2023.2216117
- 14. Kornides, Parents Who Decline HPV Vaccination: Who Later Accepts and Why? Acad Pediatr. 2018. doi: 10.1016/j.acap.2017.06.008
  15. Shah, Questions and Concerns About HPV Vaccine: A Communication Experiment. Pediatrics. 2019, doi: 10.1542/peds.2018-1872
- 16. Finney Rutten, Multilevel Implementation Strategies for Adolescent Human Papillomavirus Vaccine Uptake: A Cluster Randomized Clinical Trial. JAMA Pediatr.
- 2024. doi: 10.1001/jamapediatrics.2023.4932

  17. Kempe, The Contribution of Reminder-Recall to Vaccine Delivery Efforts: A Narrative Review. Acad Pediatr. 2021, doi: 10.1016/j.acap.2021.02.016
- 18. Zom, Multi-level quality improvement strategies to optimize HPV vaccination starting at the 9-year well child visit: Success stories from two private pediatric clinics. Hum Vaccin Immunother. 2023 doi: 10.1080/21645515.2022.2163807

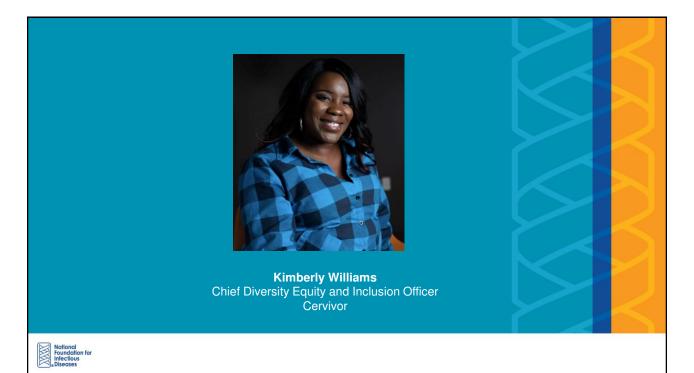


Human Vaccines & Immunotherapeutics, Special Collection-22 Articles www.tandfonline.com/journals/khvi20/collections/HPV-vaccination-starting-age-9

## Resources/Materials

#### **HPV Vaccine Toolkits**

- National HPV Vaccination Roundtable: <a href="https://hpvroundtable.org/start-hpv-vaccination-at-age-9/">https://hpvroundtable.org/start-hpv-vaccination-at-age-9/</a>
- CDC: www.cdc.gov/hpv/index.html
- AAP: www.aap.org/en/news-room/campaigns-and-toolkits/human-papillomavirus-hpv/
- WA DOH: <a href="https://doh.wa.gov/public-health-health-health-nealth-health-health-health-health-system-resources-and-services/immunization/hpv-information">https://doh.wa.gov/public-health-health-health-health-health-health-health-health-system-resources-and-services/immunization/hpv-information</a>
- HPVIQ: www.hpvig.org


#### Featured Materials

- Announcement Approach: <a href="https://www.hpvig.org/wp-content/uploads/2021/01/AAT-flyer.pdf">www.hpvig.org/wp-content/uploads/2021/01/AAT-flyer.pdf</a>
- HPV Cue Card: <a href="http://hpvroundtable.org/wp-content/uploads/2023/08/HPV-Cue-card-single-printing-english.pdf">http://hpvroundtable.org/wp-content/uploads/2023/08/HPV-Cue-card-single-printing-english.pdf</a>
- HPV Poster: <a href="https://brandtoolkit.cancer.org/BMS/">https://brandtoolkit.cancer.org/BMS/</a>
- Immunization Schedule Posters:
  - https://hpvroundtable.org/wp-content/uploads/2022/06/Co-Brand HPV Roundtable 2022 poster18x24 WEB-v1.pdf
  - https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs//348-739-AdolescentImmmunizationSchedulePoster18x24.pdf

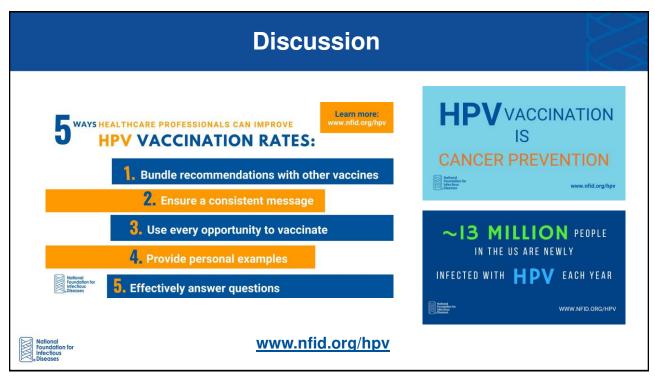


https://wcaap.org/resources/vaccines/#editable-immunization-schedule-template





## **About Cervivor**


## **Our Mission:**

Cervivor is a global community of patient advocates who inspire and empower those affected by cervical cancer by educating and motivating them to use their voices for creating awareness to end stigma, influence decision and change, and end cervical cancer.

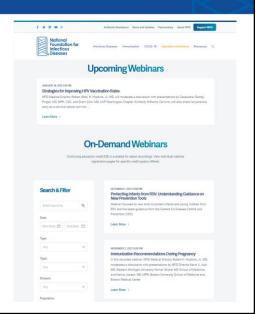








## **CME Credit and Evaluation**


- The National Foundation for Infectious Diseases (NFID) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians
- NFID designates the live activity for a maximum of 1.0 AMA PRA Category 1 Credit TM
- For the recorded version, NFID designates the enduring material for a maximum of 1.0 AMA PRA Category 1 Credit ™
- Physicians should claim only the credit commensurate with the extent of their participation in the activity
- To receive credit, you must complete the online evaluation and pass the post-test with a score of 80% or higher
- The link to the online evaluation and post-test will be sent via email to all registered participants following the webinar
- Certificate will be available for print or download following successful completion of online evaluation and post-test until January 29, 2025
- Contact cme@nfid.org with any questions



## **NFID Webinars**

View upcoming and on-demand webinars at: <a href="https://www.nfid.org/webinars">www.nfid.org/webinars</a>

Subscribe to NFID email updates: <a href="https://www.nfid.org/subscribe">www.nfid.org/subscribe</a>







69

# Connect with NFID f facebook.com/nfidvaccines instagram.com/nfid\_vaccines in bit.ly/NFIDLinkedin pinterest.com/nationalfoundat witter.com/nfidvaccines youtube.com/NFIDVideos www.nfid.org/subscribe